A General Long-Time Molecular Dynamics Scheme in Atomistic Systems: Hyperdynamics in Entropy Dominated Systems
نویسندگان
چکیده
We extend the hyperdynamics method developed for lowdimensional energy-dominated systems, to simulate slow dynamics in more general atomistic systems. We show that a few functionals of the pair distribution function forms a low-dimensional collective space, which is a good approximation to distinguish stable and transitional conformations. A bias potential that raises the energy in stable regions, where the system is at local equilibrium, is constructed in the pair-correlation space on the fly. Thus a new MD scheme is present to study any time-scale dynamics with atomic details. We examine the slow gas-liquid transition of Lennard-Jones systems and show that this method can generate correct long-time dynamics and focus on the transition conformations without prior knowledge of the systems. We also discuss the application and possible improvement of the method for more complex systems.
منابع مشابه
Hyper-QC: An accelerated finite-temperature quasicontinuum method using hyperdynamics
The quasicontinuum (QC) method is a spatial multiscale method that extends the length scales accessible to fully atomistic simulations (like molecular dynamics (MD)) by several orders of magnitude. While the recent development of the so-called “hot-QC method” enables dynamic simulations at finite temperature, the times accessible to these simulations remain limited to the sub-microsecond time s...
متن کاملPlanar Molecular Dynamics Simulation of Au Clusters in Pushing Process
Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...
متن کاملAdaptive Strain-Boost Hyperdynamics Simulations of Stress-Driven Atomic Processes
The deformation and failure phenomena of materials are the results of stress-driven, thermally activated processes at the atomic scale. Molecular-dynamics (MD) simulations can only span a very limited time range which hinders one from gaining full view of the deformation physics. Inspired by the Eshelby transformation formalism, we present here a transformation “strain-boost” method for acceler...
متن کاملExtending the Time Scale in Atomistic Simulation of Materials
■ Abstract Obtaining a good atomistic description of diffusion dynamics in materials has been a daunting task owing to the time-scale limitations of the molecular dynamics method. We discuss promising new methods, derived from transition state theory, for accelerating molecular dynamics simulations of these infrequent-event processes. These methods, hyperdynamics, parallel replica dynamics, tem...
متن کاملAccelerated molecular dynamics simulations for characterizing plastic deformation in crystalline materials with cracks
Molecular Dynamics (MD) simulations are often used for comprehending evolving deformation mechanisms in materials at the atomic scale and also for assessing continuum-scale material properties. A major limitation of conventional MD simulations is that very small MD time-scale ( fs), restrict the achievable strain-rates to be much higher ( 10 or higher) than experimentally observed rates, needed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007